
Landau-level crossing in two-subband systems in a tilted magnetic field

C. A. Duarte, G. M. Gusev, A. A. Quivy, T. E. Lamas, and A. K. Bakarov*
Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, São Paulo, Brazil

J. C. Portal
GHMFL-CNRS, Boîte Postale 166, F-38042 Grenoble Cedex 9, France;

INSA-Toulouse, 31077 Cedex 4, France;
and Institut Universitaire de France, Toulouse, France

�Received 6 October 2006; revised manuscript received 25 May 2007; published 28 August 2007�

We have studied the quantum Hall effect in parabolic AlxGa1−xAs and square GaAs quantum wells with two
occupied subbands in magnetic fields B tilted by an angle � with respect to the normal to the sample. We built
the density–magnetic field ns-B and angle-magnetic field �-B topological diagrams for the longitudinal resis-
tivity �xx and observed that the latter shows a similarity with a simulation based on a single-particle harmonic
potential approximation.
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I. INTRODUCTION

Recently, the study of the quantum Hall effect in two-
subband electron systems has attracted attention because of
the interest on the study of the regime of Landau-level cross-
ing between different subband energies. Numerous theoreti-
cal models based on Hartree-Fock calculations predict differ-
ent symmetry breaking ground states in quantum Hall effect
systems, when two Landau levels become degenerate near
the Fermi level, among which quantum Hall ferromagnetism
�QHF� is rather intriguing and well developed.1 In single
quantum wells with two subbands or in bilayer systems,
quantum Hall ferromagnetism is described in terms of the
pseudospin, which consists of real spin, orbit radius quantum
number, and subband or layer index of the involved Landau
levels.2 The quantum Hall ferromagnet occurs when the
pseudospin of the Landau level is completely aligned. When
two Landau levels are nearly degenerated, the pseudospin
orientation is determined by the minimization of the Hartree-
Fock ground-state energy, and a ferromagnetic phase transi-
tion should be observed at the crossing point. Therefore, the
coincidence of Landau levels allows us to study ferromag-
netic phase transitions by varying the many external param-
eters.

Figure 1 demonstrates the Landau fan diagram for a sys-
tem with two occupied subbands and six lowest spin splitted
Landau levels for each subband. We label a set of quantum
numbers �i ,N ,��, where i=0,1; N=0,1 , . . ., and �= ↑ ,↓
correspond to the subband, Landau orbital, and spin indices.
In the figure, the crossing of levels �1,0,↓� and �1,0,↑� with
levels �0,2,↓� and �0,2,↑� is indicated by the dashed circle.
The crossing of these levels encloses a diamondlike struc-
ture, shown in detail in Fig. 2�a�. Figure 2�b� shows the
calculated density–magnetic field ns-B topological diagram
for the longitudinal resistivity �xx �details of the calculations
are shown in Sec. II�, which is very different from the
energy–magnetic field diagram from Fig. 2�a�. Recently,
such topological diagram was studied in a square single
quantum well with two occupied subbands3 and was denomi-
nated as a “ringlike structure.” It has been argued that such

ring structure cannot be explained by noninteracting models,
and collective states would be needed to describe the ground
state in the level-crossing regime, likely connected with fer-
romagnetic order. In a previous study,5 the ns-B diagram
clearly demonstrated a set of rectangular structures con-
nected to Landau-level crossings with different pseudospins.
It was shown that the ringlike structure in the topological
ns-B phase diagram corresponds to the crossing of Landau
levels, while the intersubband anticrossing effect due to the
ferromagnetic phase transition results in the squarelike struc-
ture in the same phase diagram.4 It is not clear yet why the
correlation effects in the samples may lead to a ferromag-
netic transition or perfect subband locking effect. From the
other side, it was shown that a single-particle model is suf-
ficient to explain the vanishing magnetoresistance and the
appearance of peaks in terms of the nonmonotonic behavior
of the Fermi energy at the Landau-level crossing points.6

Additional arguments are necessary to understand the nature
of the Landau-level coincidence in the quantum Hall effect
regime.

FIG. 1. �Color online� Landau fan diagram for a two-subband
system with a subband energy separation of 14.2 meV. We show
only the lowest six Landau levels and they are spin splitted. The
encircled region marks a particular crossing of levels that we will
refer to later.
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It is worth noting that the Landau-level crossing �anti-
crossing� is observed not only in the ns-B phase diagram in a
perpendicular magnetic field but also in the presence of a
tilted magnetic field7 for a fixed electron density.

In the present paper, we extend the study of the intersub-
band Landau-level crossing to different quantum structures

�square and parabolic wells� and different types of topologi-
cal diagrams.

II. EXPERIMENTAL RESULTS IN A PERPENDICULAR
MAGNETIC FIELD

Here, we investigate two different systems �parabolic
quantum well and square well� with high mobilities in order
to analyze the Landau-level �LL� crossing in a perpendicular
magnetic field. Table I shows the summary of the sample
parameters. The AlxGa1−xAs parabolic wells can be charac-
terized by the effective bulk density, which is given by the

equation n+=
�0

2m*�

4�e2 , where m* is the effective mass and �0

= �2a /m*�1/2 is associated to the conduction-band parabolic
potential V�z�=az2. The effective thickness of the electronic
slab in parabolic wells can be obtained from the equation
Weff=ns /n+, where ns is the two-dimensional density. In
square GaAs quantum wells, the width Weff has the same
value as the bare quantum well width W. The test samples
were Hall bars with the distance between the voltage probes
L=200 �m and the width of the bar d=100 �m. The carrier
density was varied by applying a gate voltage. We measured
the longitudinal and Hall resistivities for different gate volt-
ages �positive and negative� at T=50 mK, 300 mK, and
1.6 K. The measurements were performed in a perpendicular
magnetic field and for different tilt angles � using in situ
rotation of the sample.

Figure 3 shows the longitudinal and Hall resistivities as a
function of magnetic field for �a� a 500 Å wide parabolic
AlxGa1−xAs well and �b� a 240 Å wide square GaAs well
�continuous lines�. We can see the complex structure of the
magnetoresistance peaks as a function of B. For example, at
filling factor �=6, the magnetoresistance shows an anoma-
lous spike for both samples, which is also visible at higher
filling factors. In case �b�, this anomalous peak is almost ten
times narrower than the two adjacent LL magnetoresistance
peaks. It is worth emphasizing here that the measurements of
the square well were performed at T=1.6 K and, therefore,
the Landau levels are temperature broadened. As a conse-
quence, the anomalous peaks are not due to the temperature
broadening. For the case of Fig. 3�a�, the energy scales are
smaller, and we are not able to see such a dramatic differ-
ence, since the energy gap at filling factor �=6 collapses as
temperature increases. In this case, the anomalous peak at
�=6 is only about 2.5 times narrower than the peak at �
=4.5. We attribute such spike to the Landau-level crossing

FIG. 2. �Color online� �a� Details of the Landau fan presented in
Fig. 1. The labels in the figure are explained in the text. �b� Corre-
sponding calculated magnetoresistance in the ns-B plane. Filling
factors measured from the Hall resistance are labeled. The meaning
of labels A, B, C, and D are explained in the text. �c� Experimen-
tally determined plot of the longitudinal resistivity at T=50 mK for
a 500 Å AlxGa1−xAs parabolic well.

TABLE I. Sample parameters: W is the thickness of the well; n+ is the effective bulk density of the parabolic wells; ns is the electron
density; E2−E1 and E2

*−E1
* are the subband separation energies determined from the position of the ring structure and self-consistent

calculations, respectively; Weff is the effective thickness of the electronic slab, � is the zero-field mobility. 	 is the coefficient determined
from the exchange energy �see the text�.

Sample
Spacer

�Å� Well shape
W

�Å�
n+

�1016 cm−3�
ns

�1011 cm−2�
E2−E1

�meV�
E2

*−E1
*

�meV�
Weff

�Å�
�

�cm2/V s� 	

3217 250 Square 240 8.0 23 17.2 240 594700 0.07

2537 250 Parabolic 500 47.6 4.4 14.2 14.7 92.4 590000 0.07

2536 250 Parabolic 750 21 4.4 10 8 210 322000 0.07
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point in the Landau-level fan diagram. Naively, we may ex-
pect the vanishing of the quantum Hall minima in the LL
coincident point for a single-particle picture or some modi-
fication of the energy gap due to interlevel anticrossing effect
due to electron-electron interaction. Below, we demonstrate
that the noninteracting model describes the entire magnetore-
sistance structure, including the spikes, and its dependence
on the density and tilt angle.

The carrier density in the samples was varied by applying
a gate voltage in order to produce the ns-B phase diagrams in
a perpendicular magnetic field. Numerous scans were taken
by fixing the density and sweeping the magnetic field, pro-
ducing the color map plots of the magnetoresistivity, as
shown in Figs. 2�c� and 4�a�.

These diagrams clearly show ringlike structures similar to
the ones observed by Zhang et al. in a square quantum well.3

We also found these structures in the phase diagram of the
Hall resistance �not shown�. At the four different crossing
points labeled as A, B, C, and D in Figs. 2�a�–2�c�, the LL
with the following quantum numbers are involved: total fill-
ing factor �tot=5: �0,2,↑� and �1,0,↑�; total filling factor �tot
=6 at lower field: �0,2,↓� and �1,0,↑�; total filling factor �tot
=6 at high field: �0,2,↑� and �1,0,↓�; total filling factor �tot
=7: �0,2,↓� and �1,0,↓�. In the magnetoresistance ns-B dia-
grams, the regions around such LL crossing points are char-
acterized by stripes that cross resistance minima at corre-
sponding filling factors. For example, in Fig. 2�b�, the stripe
around point A crosses the resistance minimum at filling fac-
tor 6; the stripe around point B crosses the minimum at fill-
ing factor 5, and so on. These stripes appear in magnetore-

sistance curves as the above mentioned spikes �as in Fig. 3�.
The narrowing and the disappearance of the “anomalous”
spikes in the level-crossing regime �which appear at filling
factor 6 in Fig. 3� may serve as a precursor of the quantum
Hall ferromagnet transitions.

As has been indicated in Ref. 6 �see also earlier analysis
in bilayer systems8�, the Landau-level fan diagram cannot be
directly mapped by the ns-B topological diagram produced
from the magnetoresistance measurements. This reflects the
fact that only the electrons from the Fermi level contribute to
the conductivity, and on the other side, the Fermi energy
strongly oscillates with the magnetic field. The mapping of
the magnetoresistance requires exact knowledge of the den-
sity of states �DOS� of the two-dimensional electron gas
�2DEG� in a strong magnetic field. To generate the conduc-
tivities, and hence the resistivities, we adopted the Lorentz-
ian form of the density of states for the magnetoresistance
calculations in a strong magnetic field.4 Oscillations of the
Fermi energy are calculated from the equation �in the ideal
zero-temperature case�

ns = �
−


EF�B�

DOS�B,E�dE , �1�

where DOS �B ,E� is the density of states. We may approxi-
mate the density of states by a sum of Lorentzians centered
on each Landau level EN=��c�N+ 1

2
�, where �c= eB

m* is the
cyclotron frequency. The DOS is given by �including spin
and subband indices s , i�

FIG. 3. �Color online� Magnetoresistances of �a� a 500 Å wide
AlxGa1−xAs parabolic and �b� a 240 Å wide square GaAs well as a
function of the perpendicular magnetic field. The dashed curves are
calculated resistances from the noninteracting two-subband model
�see the text�. Filling factors measured from the Hall resistance are
labeled.

FIG. 4. �Color online� Experimentally determined plot of the �a�
longitudinal resistivity at T=1.5 K and �b� calculated resistivity in
the ns-B plane for a 240 Å square GaAs well. Filling factors mea-
sured from the Hall resistance are labeled.
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DOS�E,B� =
eB

h
�
N=0




�
i=0,1

�
s=+,−



1 + �EN,i,s − E


�2 . �2�

The longitudinal conductivity �xx was calculated by

�xx�B� =
e2

h
�
N=0




�
i=0,1

�
s=+,−

�N +
1

2
� 1

1 + 2�EN,i,s − EF�B�


�2 ,

�3�

where the energy levels associated with the hybrid subband
energies in the tilted fields E	 and E� �they will be defined in
the next section� are

EN,0,s = �N +
1

2
�E	 + s

1

2
g*�BB , �4�

EN,1,s = �N +
1

2
�E	 + E� + s

1

2
g*�BB . �5�

In our calculations, we used a level broadening =� /�q
independent of the magnetic field. Making this choice, we
found a better agreement with the experimental data rather
than using a magnetic field dependent level broadening like
the square-root dependence in the case of the self-consistent
Born approximation. In fact, many other authors have found
different dependencies9 and, as pointed out by Raikh and
Shahbazyan,10 when the correlation length is larger than the
Larmor radius, the broadening is independent of the mag-
netic field, and this condition is verified in the region of high
magnetic fields. The correlation length is not properly
known, but the condition above is very likely to occur in our
samples because, in high magnetic fields, the Larmor radius
is smaller than the potential correlation length. The fitted
value =0.066 meV is about ten times smaller than the one
obtained from the amplitude of the Shubnikov–de Haas os-
cillations in a low magnetic field. We attribute this difference
to the fact that, in our approximation, we did not consider the
delocalized states.11

It is worth noting that the factor g* includes the bare con-
tribution g0 due to the Zeeman energy which depends on the
total magnetic field B, and an exchange contribution Eex
which depends only on the perpendicular component of the
field B�. The total contribution can be written as12,13

g*�BB = g0�BB + Eex�B�� , �6�

where �B is the Bohr magneton and Eex=	��c.
The longitudinal resistivity �xx was calculated as a func-

tion of the longitudinal and Hall conductivities �xx and �xy
by simply using the Drude formula �xx=�xx / ��xx

2 +�xy
2 �,

where the Hall conductivity is given by �xy = nse �Bbot
An experimental ns-B plot that corresponds to the above

figures is shown in Fig. 2�c�. This figure presents the result
of the measurements in an AlxGa1−xAs parabolic quantum
well 500 Å wide at the temperature T=50 mK. We can see
the similarity between Figs. 2�b� and 2�c�. Note that the
range of values of ns in Fig. 2�c� goes from 4.9
�1011 to 6.8�1011 cm−2.

The calculated magnetoresistances �xx are presented in
Fig. 3 �dashed lines� and reproduce the position of all the
spikes. Since the localization effects were not included in our
model, the peak broadening of the simulated curves at low
temperatures �Fig. 3�a�� is significantly larger than for the
experimental data. However, at high temperatures �Fig. 3�b��,
we can see a resemblance between the theoretical and experi-
mental traces. The similarities demonstrate that this simple
model contains the essential physics necessary to account for
the peak broadening and their position. For example, at fill-
ing factor �=6 in Fig. 3, we may see narrow spikes, which in
other systems have been identified with magnetic transition
between the two Ising-like states in the QHF at the LL cross-
ing due to their anomalous width and magnetic field
position.5,20 In the noninteracting model, such spikes origi-
nate from the nonmonotonic behavior of the Fermi energy
with magnetic field. Due to magnetic quantization, the Fermi
energy is pinned by the Landau levels and makes discrete
jumps as a function of field in order to be close to the value
of the Fermi energy at zero field. If only one electron sub-
band is occupied, the calculated magnetoresistance shows
the Shubnikov–de Haas spectrum, which consists of broad
peaks and narrow minima, which agrees with high tempera-
ture measurements of Rxx in high mobility samples. We
should note that the broadening of the magnetoresistance
peaks in strong magnetic fields is determined by the pinning
of the Fermi level, not by the LL broadening due to the
scattering. If two subbands are occupied, the Fermi level is
not pinned in the LL coincident point and abruptly falls from
pseudospin up into a pseudospin down state. The width of
the peaks in Rxx in LL coincident points are determined by
LL broadening, which is ten times smaller than the effective
broadening of the peaks far from the crossing points. If the
temperature falls down, the states in the band tails of each
LL are localized, and all magnetoresistance peaks become
narrow.

We calculated �xx for different densities as a function of
magnetic field and produced the topological diagrams shown
in Figs. 2�b� and 4�b�. From the comparison of the position
of the center of the rings, we deduced the subband separation
energies E1−E0 which are shown in Table I. From the com-
parison of the size of the rings, we determined the correlation
energies Eex and, consequently, the parameter 	. We found
that the value of 	 was two to three times smaller than the
one determined from the spin-splitting collapse in single sub-
band samples.12,14 Aleiner and Glazman15 predicted a weak
dependence of the parameter 	 on the electron density 	
= �1/�kFaB�ln�2kFaB�, yielding a value 	=0.21–0.22 for our
structures. Such discrepancy may indicate that different
physical effects are involved in the spin collapse and LL
crossing regimes. The calculation of the corresponding mag-
netoresistivity map in the ns-B plane in the same range of
values of magnetic field gives the diagram shown in Fig.
2�b�. In this diagram, we choose a range of electron concen-
tration in order to see the peculiar structure seen in the figure
�from 4.5. to 7.5�1011 cm−2�. This structure does not re-
semble the diamond of Fig. 2�a� and is a more complex
structure that resembles a deformed ring. After an inspection,
we may identify the filling factors in each region of the dia-
gram, which are shown in the figure. We marked in Figs. 2�a�
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and 2�b� the points labeled as A, B, C, and D, which corre-
spond with each other in both figures. We can deduce that the
diamond in Fig. 2�a� corresponds directly to the ring in Fig.
2�b�. In fact, the topological ringlike structures can be easily
identified with the diamond structures in the LL fan diagram
of a two-subband system at the locations of the LL
crossings.3,5 To understand the relationship between both
structures, let us follow the level �1,0,↑� in Fig. 2�a�, starting
from B=3.5 T, where its energy is around 17.0 meV. At this
point, it crosses the Fermi energy corresponding to ns=5.6
�1011 cm−2. By increasing the magnetic field, the same Lan-
dau level crosses Fermi energies corresponding to different
values of ns. From 3.5 T to approximately 3.8 T, ns increases
up to about 6.0�1011 cm−2. Above this field, the level
crosses Fermi energies corresponding to decreasing values of
ns and in point A, this level crosses the level �0,2,↓� �at B
=3.88 T�. The same picture is verified in Fig. 2�b�. In this
figure, the stripe that starts at 5.6�1011 cm−2 at B=3.5 T
corresponds exactly to the Landau level �1,0,↑�. By increas-
ing the magnetic field, this stripe initially moves up to higher
ns values and at around B=3.8 T starts to move down to
lower values of ns. At point A, this stripe crosses another
stripe that started at B=3.5 T with ns	4.8�1011 cm−2. A
careful inspection reveals the direct correspondence between
Figs. 2�a� and 2�b� and common points A, B, C, and D, as
mentioned. In other words, the diamondlike structure in the
Landau fan diagram is mapped into the ring structure by
means of the nonmonotonicity of the Fermi energy with re-
spect to the magnetic field.

III. EXPERIMENTAL RESULTS IN A TILTED
MAGNETIC FIELD

In general, there is no difference in LL crossing physics
when we investigate the ns or tilt angle dependence of the
magnetoresistance. However, the tilted field method may
provide additional and independent information about
interaction-induced gaps and the Fermi-level trajectory in the
quantum Hall effect regime. Therefore, it is useful to check
the topological features of the phase diagram in the �-B
plane and compare them with a simple model. In order to do
it, we measured the magnetoresistance in a tilted magnetic
field by rotating our samples in situ. We built tilt angle–
magnetic field phase diagrams for different densities and
wells. Figures 5�a� and 6�a� show the magnetoresistivity
plots as a function of the perpendicular component of the
magnetic field for the 500 Å wide parabolic and the 240 Å
wide square quantum wells for fixed densities. We can
clearly see the set of the LL crossing points in these dia-
grams. In both figures, there is a set of vertical lines accom-
panied by arches which turn right, crossing regions of mini-
mum resistance. It is interesting to check if we can reproduce
such topological features of the phase diagrams from the
model discussed above. We start from the formalism16 where
the energy eigenvalues of the Hamiltonian for a harmonic
potential in a tilted magnetic field have been derived analyti-
cally. The resulting energies are �n	+1/2�E	+ �n�+1/2�E�

in terms of the positive integer quantum numbers n	 and n�,
and the two energies E	�B� and E��B� are given by

E	�B� = �„�c
2 cos2��� + �2 sin2��� − �c� sin�2��sin���…1/2,

�7�

E��B� = �„�c
2 sin2��� + �2 cos2��� + �c� sin�2��sin���…1/2,

�8�

where � is the tilt angle and � is an angle defined by the

expression tan�2��=
2�c� sin���

��2−�c
2� . The parameter � is associ-

ated to the conduction-band parabolic potential along the z
direction, which is given by 1

2m*�2z2. The electron-electron
interaction in the quantum well changes the bare harmonic
potential in some way, but in a first approximation, the over-
all shape may be considered almost parabolic in our
parabolic-well samples with an effective � different from
that of the empty-well case, �0. The value of � is obtained
by the best fit of the experimental curves to the theoretical
model.

For a perpendicular magnetic field, n	 is identical to the
Landau-level index N and n� is associated to the subband
index, so that the subband energy separation is given by
E�
��=E1−E0 and E	=��c. However, in a tilted field, we
should substitute the energies in Eqs. �4� and �5� by E	 and
E� from Eqs. �7� and �8�.

The calculated �-B phase diagrams for our square and
parabolic wells are presented in Figs. 5�b� and 6�b�. As can
be seen, they show similarities with Figs. 5�a� and 6�a�,
which indicates that this simple model contains the essential
physics behind the LL crossing regime. We can see that the
model reproduces all the key features in the phase-diagram
topology, as well as the position of the LL degeneracy re-
gions. It is worth noting that, for a square quantum well, the

FIG. 5. �Color online� Experimentally determined plot of the �a�
longitudinal resistivity at T=300 mK and �b� calculated resistivity
in the �-B plane for a 500 Å AlxGa1−xAs parabolic well. Filling
factors measured from the Hall resistance are labeled.
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discrepancy between theory and experiment can be explained
by the deficiency of the model.16 For example, the energy
spacing in the harmonic potential is proportional to cos �,
while in the square well, a cos2 � dependence is expected17

in the limit of a strong magnetic field. It explains the shift of
the center of the structure of arches in Fig. 6�a� at filling
factor �=8 to higher � in comparison with Fig. 6�b�.

To better understand these diagrams, we show in Fig. 7
the Landau fans corresponding to the plot of Fig. 5�b� for
different tilt angles ��a� 0°, �b� 23°, �c� 33°, and �d� 38°� from
B=3.75 T to B=5.75 T. In Fig. 7�e�, we present the corre-
sponding magnetoresistance curves. The crossing of levels at
a perpendicular magnetic field shown in Fig. 7�a� reproduces
the panorama of Fig. 1. As the tilt angle is increased, the
diamond centered at filling factor 6 �centered at �4.0 T in
Fig. 7�a�� moves right and up, and at 38°, it is almost hidden.
In Fig. 7�a�, the Fermi level �thick winding gray lines in
Figs. 7�a�–7�d�� passes inside the diamond, which gives a
minimum in the magnetoresistance. In fact, in Fig. 7�e�
�curve for 0°�, this minimum is located between peaks a and
b, which correspond to the levels �0,2,↓� and �0,2,↑� respec-
tively. On the other side, the very wide and low peaks of
magnetoresistance centered at �4.3 T �peak c� and �5.25 T
�peak d� correspond to the passage of the Fermi level in
levels �1,0,↓� and �1,0,↑�. At the tilt angle of 23° �Fig. 7�b��,
the Fermi level passes on the lower boundary of the diamond
that divides regions of filling factors 5 and 6. This leads to
the appearance of a peak centered at �4.25 T labeled e �see
the corresponding magnetoresistance curve in Fig. 7�e��, and
peaks a and b have displaced further to the right, accompa-
nying the movement of the diamond. However, at this angle,
the Fermi level does not yet pass on level �1,0,↓�. This causes
the disappearance of peak c that was seen at 0°. This shows

that peaks c and e have distinct origins. Now, in Fig. 7�c�
�angle of 33°�, the Fermi level passes below the diamond,
crossing the region of filling factor 5. At this moment, peak e
disappeared; peaks a and b have moved again to the right.
Finally, at the angle of 38° �Fig. 7�d�� and above, peak d
disappeared as the Fermi level does not yet cross the level
�0,2,↑�, and the feature centered at �5.25 T corresponds
uniquely to peak b. The Fermi level crosses only the levels
�1,0,↓� and �1,0,↑�, and the levels �2,0,↓,↑� are definitively
depopulated in this threshold angle. The arches seen in the
plots of Fig. 5 in the same range of magnetic field corre-
spond, consequently, to peaks a and b. At angles above
�35°, these peaks remain fixed in the magnetic field axis so
that the arches end, giving place to vertical lines. We infer
that the appearance of arches in both Figs. 5 and 6 is a
consequence of two-subband occupancy, and the threshold of
the disappearance of any pair of arches is associated to the
depopulation of a particular Landau level of the second sub-
band.

Finally, it is worth noting that the topological diagrams in
the �-B plane obtained in this paper for narrow parabolic
and square wells are very different from the diagrams which
have been measured in 2000–3000 Å wide parabolic wells
in Ref. 7. For example, Figs. 5 and 6 show shifts of the
position of the peaks in the shape of arches from high to low

FIG. 6. �Color online� Experimentally determined plot of the �a�
longitudinal resistivity at T=1.6 K and �b� calculated resistivity in
the �-B plane for a 240 Å square GaAs well. Filling factors mea-
sured from the Hall resistance are labeled.

(e)(e)(e)(e)

FIG. 7. �Color online� Details of the Landau fans for different
tilt angles from B=3.75 T to B=5.75 mT showing the crossing of
levels presented also in Fig. 1 �here, some filling factors are
shown�: �a� tilt angle of 0°, �b� tilt angle of 23°, �c� tilt angle of 33°,
and �d� tilt angle of 38°. In these figures, the dashed lines are Lan-
dau levels �spin splitted� and the winding gray lines are the Fermi
levels. In �e�, we present the magnetoresistances corresponding to
the same angles �indicated at the right�. The position of the filling
factors 4, 5, and 6 is also shown.
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filling factor � with increasing tilt angle. This observation
disagrees with the behavior of the anomalous peak in the
magnetoresistance traces of the 2000 Å wide parabolic well,
which is shifted in the opposite direction with � �see Fig. 5
in Ref. 7�. Such a behavior can be explained by the different
character of the LL crossing. In the 2000 Å wide parabolic
well, the second subband is depopulated at low magnetic
field and, therefore, the alignment of the two LL with oppo-
site spin and different Landau orbital indices should be ex-
pected within the same subband. Note that for wide wells,
LL crossing can occur at small tilt angle, since the two-
dimensional Landau states collapse into the three-
dimensional Landau bands,18 which contributes to decrease
of the energy E	 with �. For narrow GaAs wells and single
AlxGa1−xAs heterostructures, LL crossing occurs because the
bare Zeeman splitting, which is proportional to the total
magnetic field ��Btot�, can be larger than the cyclotron en-
ergy which is proportional to the perpendicular component of
the magnetic field ��B��. In Figure 8�a�, we plot the calcu-
lated �-B� topological diagram for the 500 Å wide para-
bolic AlxGa1−xAs well, which we extended to higher mag-
netic field and tilt angle. We can observe lines crossing the

filling factors 2 and 4 with negative slopes, while in Figs. 5
and 6, the crossing lines have positive slopes. We attribute
the magnetoresistance peak at filling factor �=2 to the coin-
cidence between the �0,1,↑� and �0,0,↓� levels. Figure 8�b�
displays the calculated �-B� topological diagram for the
2000 Å wide parabolic AlxGa1−xAs well in order to allow a
comparison with our early study of the LL crossing in wide
parabolic wells.7 We can see that the simple simulations of
the �-B� phase-diagram topology is in good agreement with
the experiment �Fig. 5 in Ref. 7�.

We would like to complete this work with a short discus-
sion of the previous study of the LL crossing regime and our
observations. As we mentioned above, although substantial
progress has been made in understanding the quantum Hall
ferromagnetism, the theoretical and experimental results re-
main controversial. Theory predicts the emergence of
interaction-driven gaps when the interaction energy com-
petes with the disorder energy.2 Therefore, the spikes in the
magnetoresistance minima at even filling factors due to the
Fermi energy locking at the crossing points �see Fig. 1�
should disappear.4 On the other hand, the fluctuations of the
potential results in domain formation that introduces the ad-
ditional domain-wall scattering, which leads to the spikes in
the quantum Hall minima.19,20 In the present paper, we report
the observation of spikes in the GaAs/AlGaAs system and
explain them in terms of the nonmonotonic behavior of the
Fermi energy in the cross-level regime within the simple
single-particle model. The disappearance of the spikes at
high magnetic field4 can be explained by the inhomogeneity
of the density in the realistic sample, which becomes more
important in a strong field, since the magnetic length de-
creases with B. Surely, more detailed and careful analysis of
the magnetoresistance behavior in the LL crossing regime is
necessary in order to distinguish between QHF and a simple-
level coincidence effect.

In conclusion, we performed detailed measurements of
the magnetoresistance in parabolic AlxGa1−xAs and square
GaAs quantum wells with two occupied subbands as a func-
tion of the density and tilt angle. We built the topological
diagrams in the ns-B� and �-B� planes and compared them
with simulations based on a single-particle harmonic poten-
tial approximation. The variation of the tilt angle leads to a
complex structure of superposition of magnetoresistance
peaks, which depends intrinsically on the oscillations of the
Fermi level as a function of magnetic field.
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